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Abstract

In the present study, we propose a relatively novel wall-fluid molecule collision rule for description of adiabatic solid-wall in atomistic
simulations and using it as boundary condition for simulation of rarefied gas natural convection in a finite enclosure of adiabatic side-
walls. This novel wall-fluid collision rule keeps the particle total velocity invariant and its normal velocity component reversed with the
same magnitude before and after collision, while the other two components can vary randomly. This boundary treatment is more phys-
ically reasonable for description of a real solid-wall at adiabatic condition. To examine the performance of this novel rule, natural con-
vection of rarefied gas in a micro-scale rectangular enclosure of length-to-height aspect ratios 2.016 and 4 heated from below is employed
as the test model and predicted by direct simulation Monte Carlo (DSMC). The parameters of Knudsen number Kn = 0.01, 0.016, 0.02
and Rayleigh number Ra up to 3061 are considered. The present results demonstrate that the novel collision rule generates physically
reasonable predictions of thermal-fluid behaviors at microscales and, compared to the existing boundary treatments of the same class,
the present one is more efficient in the computational aspect.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to rapid development of microsystem technology,
in the recent two decades, study of flow characteristics at
microscales has attracted lots of attentions [1]. In a micro
flow configuration, the gaseous fluid flow cannot be
regarded as continuum for its relatively large mean free
path. Under this situation, atomistic methods have to be
employed to perform simulation of the micro fluid behav-
iors. Molecular dynamics (MD) simulation [2–4] and direct
simulation Monte Carlo (DSMC) [5,6] are two most com-
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monly used methods in this aspect. In this class of simula-
tion tools, MD is a deterministic method and mostly
appropriate to the simulation of dense fluids or liquids such
as water. The computational time needed in a MD simula-
tion is proportional to the square of the number of the mol-
ecules in the fluid system. Therefore, the number of
molecules has to be limited for its time-consumption. On
the contrary, the strategy of the DSMC is to simulate tre-
mendous amount of real molecules by small amount of
particles, it means that the number of particles in DSMC
can be relatively much less than that in MD simulation.
Since DSMC employs method of probability to predict
the occurrence of the molecule collisions with rarefied gas
assumption of mean molecular spacing much larger than
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Nomenclature

As aspect ratio of enclosure, L/H
d radius of molecule (m)
H height of enclosure (m)
Kn Knudsen number
L width of enclosure (m)
m mass of molecule (kg)
NS number of segments in Rapaport’s model,

NS = H/d
n number density (m�3)
p pressure (Pa)
Ra Rayleigh number
RaC0 Rayleigh number for onset of the convection at

continuum condition
Rf random number
rref reference radius of molecules (m)
T temperature (K)
V pre-collision velocity vectors of fluid particle
V* post-collision velocity vectors of fluid particle
mh most probable thermal velocity at hot wall

Greek symbols

d segment length in Rapaport’s model (m)
h dimensionless temperature, h = (T � Tc)/(Th �

Tc)
�h horizontal average of dimensionless temperature
k mean free path of the molecule (m)
W dimensionless stream function
st mean collision time (s)
Dt time step (s)

Subscripts

0 initial
c cold
h hot
R right wall
M middle point of the right-wall
m maximum value
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the effective molecular diameter. To deal with flow and
heat transfer characteristics in a microscale gas flow config-
uration, DSMC is more appropriate than MD simulations
[7,8].

In literature, the noted Rayleigh–Bénard (RB) convec-
tion in a rectangular enclosure is usually employed as a
DSMC model for study of thermal-fluid characteristics in
gaseous flow at microscales. The macro RB convection
has been studied extensively in the past decades [8–13],
whereas studies of the RB convection of rarefied gas appear
only in the recent 15 years. Garcia [14] performed the first
DSMC computation of the RB convection. Garcia and
Penland [15] used principal oscillation pattern (POP) to
analyze the data from DSMC and found that the DSMC
results and the predictions of the linearized Navier–Stokes
equations have very good qualitative agreement. Stefanov
and Cercignani [16] explore effects of Knudsen number
(Kn), Froude number and temperature difference between
the top and bottom boundaries on the RB instability.
Watanabe et al. [17] predict bifurcation of conductive to
convective state of two-dimensional RB problem by
DSMC with specular reflection at two sidewalls. The
results revealed that, with diffuse condition posed on the
top and bottom walls, the critical values of the governing
parameter agree well with the counterpart case of the
macro flow; while the critical parameter becomes higher
as the semi-slip condition is used. The study of Yoshimura
and Abe [18] disclosed that the rarefaction has stabilizing
effect on Rayleigh–Bénard instability in an infinite fluid
layer. Golshtein and Elperin [19] used DSMC combined
with method of digital image filtering to eliminate statisti-
cal fluctuation as well as to reduce the computational time.
The predictions of the critical parameter are lower than
that from linear stability theory. Watanabe and Kaburaki
[20] simulated three-dimensional RB system by parallel
computation of DSMC. The critical values of the govern-
ing parameter found for appearance of hexagonal flow
pattern are higher than predictions of linear stability
theory.

Hirano et al. [21] demonstrated that the DSMC results
approach the finite difference predictions of temperature
and velocity fields as Kn decreases. Stefanov et al. [22,23]
predicted periodic and chaotic attractors in mono-atomic
rarefied gas RB instability problem by using DSMC. The
predictions of critical condition at low Kn are very close
to the threshold values found using finite difference
method. Tzeng and Liu [24,25] explored effects of initial
conditions, heating conditions, system dimensions, and
number of particles on the RB flow patterns and found that
the initial condition has noticeable influences on the flow
pattern. Two side boundaries of the computational domain
are subjected to specular reflection condition.

In the study of the macroscale two-dimensional RB
instability/convection, it has been found that, stress-free
condition on the top and bottom walls combined with
two side boundaries periodic (symmetric), the critical Ray-
leigh number for onset of the convection is RaC0 = 657. As
the top and bottom walls are of no-slip in nature, the
threshold becomes RaC0 = 1708. The critical Rayleigh
number becomes higher as the side boundaries are solid
walls rather than the symmetric lines in fluids. Since the
boundary conditions influence the RB instability/convec-
tion, simulation with correct boundary conditions is
important.

In atomistic simulations, the diffuse reflection can be
used to simulate rough surfaces, but there is energy
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exchange between molecules and wall. It can be used for
the solid wall with roughness but not appropriate for adi-
abatic walls. Specular reflection can be used for the bound-
aries at which the velocity and temperature fields both are
symmetric, e.g., the boundaries of vortex-roll pairs in infi-
nite RB problem. However, at adiabatic sidewalls of a solid
enclosure, the temperature field has a zero gradient but the
velocity is not. In this situation, both diffuse reflection and
specular reflection are not appropriate. That means, in the
aspect of atomistic simulation, the specular reflection is
only good for a perfect smooth/slip surface but not a real
solid-wall of roughness.

In all of the previous studies mentioned above, the spec-
ular reflection boundary condition was posed on the side
boundaries. This specular reflection boundary condition
is of course invalid for simulation of the RB convection
in a finite solid box. Therefore, to find a solid-fluid collision
rule considering a solid-wall at adiabatic condition is a sig-
nificant issue of atomistic simulations. For MD study of
RB convection in rectangular enclosures, Rapaport
[26,27] adopted a segmented specular reflection boundary
condition. The sidewalls were divided into a number of seg-
Table 1
Boundary conditions used in DSMC for rarefied gas Rayleigh–Bénard
convection

Authors (year) As Kn Boundary conditions

Top Bottom Left Right

Garcia (1990)
[14]

1 0.029 Slip Specular
0.02 Semi-Slip

Garcia and
Penland
(1991) [15]

1 0.02 Slip Specular

Stefanov and
Cercignani
(1992) [16]

2, 3 0.01 Diffuse Specular
0.02
0.05

Watanabe et al.
(1994) [17]

2.016 0.016 Diffuse Specular
2.83 Semi-

Slip
Diffuse Specular

Yoshimura and
Abe (1995) [18]

2 0.025 Diffuse Specular
�0.05

Golshtein and
Elperin
(1996) [19]

5 0.01 Diffuse Specular
2

Watanabe and
Kaburaki
(1997) [20]

8:8:1 0.016 Diffuse Specular
2:2:1

Hirano et al.
(2002) [21]

1 0.005 Diffuse Specular
0.01
0.02
0.029

Stefanov et al.
(2002) [22,23]

2 0.001 Diffuse Specular
�0.03

Tzeng and Liu
(2005) [24,25]

2, 4 0.01 Diffuse Specular
�0.04

Present Work 2.016, 4 0.01 Diffuse Specular
(SR)

0.016 Sg-SV
[26,27]

0.02 Pt-SD
(Novel)
ments of length scale about one molecular radius. Each
segment can be either specular reflection or velocity rever-
sal. The two types of wall segments were arranged in a stag-
gered mode. The previous results showed that this
boundary condition is able to simulate no-slip adiabatic
walls. However, in this boundary treatment, the reflection
type of the colliding particle depends on the position where
it collides with the wall.

Considering the conservation of energy with adiabatic
condition and the randomness of the velocity components
on a solid wall of roughness, we proposed a different
wall-fluid collision model to simulate the adiabatic solid
walls. The natural convection of rarefied gas in a micro-
scale rectangular enclosure heated from below is simulated
using DSMC with the present novel wall-fluid collision
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Fig. 1. Physical model of a two-dimensional rectangular enclosure of
length L and height H with side walls adiabatic; the upper and bottom
walls are isothermal at Tc and Th, respectively.
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Fig. 2. Schematic diagram of the hybrid model of adiabatic boundary
condition (a) SR BC, (b) Sg-SV BC, and (c) Pt-SD BC.
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rule. Results generated with different boundary conditions
are also compared. Table 1 presents boundary conditions
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Fig. 3. Flow velocity vector fields and isotherms at Kn = 0.016 and (a) Ra =
(d) Ra = 1646 (Pt-SD BC).
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Fig. 4. Flow velocity vector fields in enclosure of As = 2.016 at Kn = 0.016 and
BC), (d) Ra = 3061 (SR BC), (e) Ra = 3061 (Sg-SV BC), (f) Ra = 3061 (Pt-SD
used in previous studies of atomistic simulation for rarefied
gas Rayleigh–Bénard convection.
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(a) Ra = 2632 (SR BC), (b) Ra = 2632 (Sg-SV BC), (c) Ra = 2632 (Pt-SD
BC).
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2. Physical model and boundary conditions

2.1. Thermal-fluid model – enclosure heated from below

The geometry and coordinate system of the 2D horizon-
tal rectangular enclosure simulated in the present work are
shown in Fig. 1. The flow configurations used by Watanabe
et al. [17] are adopted. The computational domain is of
height H = 5.6 � 10�3 m and width L = 1.13 � 10�2 m.
The corresponding length-to-width aspect ratio is As = L/
H ’ 2.016, which is approximately the dimensionless wave-
length at the theoretical critical Rayleigh number =
RaC0 = 1708. The gas under consideration is air of hard
sphere (HS) model with mass m = 4.8 � 10�26 kg and
molecular radius d = 3.7 � 10�10 m. The initial pressure
and temperature are p0 = 20 Pa and T0 = 80 K, respec-
tively. Under these conditions, the number density is
n0 = 1.81 � 1022 m�3, the mean free path k0 = 9.08 �
10�5 m, and then the Knudsen number is Kn = 0.016.
The top (cold) wall temperature lies at a constant and uni-
form temperature Tc = 80 K, while the bottom (hot) wall
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Fig. 5. Transverse velocity and temperature distributions at mid-level of
the enclosure of As = 2.016 at Kn = 0.016 and Ra = 2632. (a) Transverse
velocity and (b) temperature.
also at a constant and uniform temperature in the range
of 100–600 K. The Rayleigh number Ra ranges from 126
to values over 3000.

The domain is divided into 40 � 20 sampling cells, and
each sampling cell is further divided into 5 � 5 collision
cells. Initially, 400 and 16 particles are uniformly distrib-
uted in the sampling and collision cell, respectively. The
total number of the particle in the simulation is
3.2 � 105. As to the time step in the simulation, we adopt
Dt = 0.9st, and st = k0/vh is the mean collision time and
vh = (2kBTh/m)�1/2 is the most probable thermal velocity
evaluated based on the hot wall temperature. In the com-
putational process, sampling is performed every two time
steps, and averaging is taken for every 100 sampling data.
After 30,000 time steps, statistical mean of the fluid prop-
erties is performed till 50,000 time steps.

2.2. Boundary conditions

The pre- and post-collision velocity vectors of a fluid
particle are denoted by V = ui + vj + wk and V* = u*i +
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Fig. 6. Transverse velocity and temperature distributions at mid-level of
the enclosure of As = 2.016 at Kn = 0.016 and Ra = 3061. (a) Transverse
velocity and (b) temperature.
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v*j + w*k, respectively. In general, the diffuse reflection is
appropriate for an isothermal solid wall, whereas the spec-
ular reflection is inherently symmetric in nature. To meet
the requirement of adiabatic condition, the energy has to
be conserved, i.e., jV*j2 = jVj2 or jV*j = jVj. The major
difference among various adiabatic wall conditions is the
treatment of the velocity components. As mentioned ear-
lier, this specular reflection boundary condition (SR BC)
is basically valid for the boundaries where both velocity
and temperature fields are symmetric but incorrect for ther-
mally adiabatic condition at the solid wall. For the specular
reflection as shown in Fig. 2a, the velocity components are
all keep invariant in their magnitudes but normal compo-
nent reversed in direction, i.e., u* = �u, v* = v, w* = w.

To overcome this difficult situation in atomistic simula-
tion, in their molecular dynamics simulation, Rapaport
[25,26] proposed a segmented specular reflection/velocity
reversal boundary condition (herein denoted as Sg-SV
BC). As shown in Fig. 2b, the wall is divided into numerous
segments, each segment is of length d, which equals to the
reference radius of molecules, rref. The number of the seg-
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Fig. 7. Bifurcation diagrams for the flows atKn = 0.016 in enclosure of
As = 2.016 with sidewalls at (a) Sg-SV BC, (b) Pt-SD BC. (hR: right-side
boundary, hM: in the middle of enclosure, �h: horizontal averaged).
ment is NS = H/d, and it is of order about 107. At each
wall, from bottom to top, each segment is assigned specular
reflection and velocity reversal in a staggered manner.
Therefore, this boundary condition is herein denoted as
Sg-SV BC. For the specular reflection segments, the veloc-
ity components can be depicted as that stated in last para-
graph, whereas for velocity reversal segments, all velocity
components of the particle before and after colliding with
the wall are of the same magnitude but opposite direction,
i.e., V = �V*. At both the specular reflection and this
velocity reversal conditions, the magnitude of the total
velocity remains unchanged after colliding with the wall.
Since there is no energy exchange between the particle
and the wall, the solid wall is regarded as adiabatic. In
addition, with segments of molecular size d = rref and stag-
gered arrangement of specular reflection and velocity rever-
sal, the wall seems equivalent to a corrugated surface of
roughness.

In the present work, we propose a relatively novel
boundary treatment, in which the reflected particle after
colliding with the wall is also assumed to have the total
energy unchanged, jV*j = jVj. Different from the Rapa-
port’s method, the collision rule is applied everywhere on
the wall with the normal velocity reversal, u* = �u, but
the two velocity components tangential to the wall, v and
w, reflecting randomly, viz.,

v� ¼ sin 2pRfð ÞðjVj2 � u2Þ1=2 ð1Þ
w� ¼ cos 2pRfð ÞðjVj2 � u2Þ1=2 ð2Þ

where Rf is a random number. Fig. 2c schematically pre-
sents this novel boundary treatment. In this novel collision
rule, combination of the normal component reversal with
random reflection of the molecule velocity components in
the two directions tangential to the wall partially is em-
ployed to simulates the molecule reflection on a real sur-
face. This treatment is a hybrid one with effects of partial
specular and partial diffuse reflections and thus is denoted
as Pt-SD BC hereafter.

The use of the normal velocity reversal, u* = �u, seems
not necessarily true for the particle collision on a rough
wall. However, it is used as a mechanism to simulate the
adiabatic solid wall, which is actually partial specular and
partial diffuse in nature. Rapaport’s proposal of a seg-
mented specular reflection/velocity reversal condition also
used u* = �u. In addition, Yamamoto, et al. [28] in their
recent work used the molecular dynamics (MD) simulation
to study collisions of gas molecules with either clean or
contaminated surface. Their results indicated that the glo-
bal velocity distribution functions of the reflected mole-
cules for gas-wall interactions are nearly symmetric to the
distributions of the incident molecules and well described
by the Maxwell-type reflection conditions. It implies that
the average magnitude of the normal velocity component
is most likely unchanged or changes little. For the present
case of adiabatic wall, it seems reasonable to use this
notion of approximately equal average normal velocity
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components of incident and reflected molecules and to
assume u* = �u for gas-wall collisions. Accordingly, the
present collision rule invokes this normal velocity reversal
condition with consideration of energy conservation and
randomly changed tangential velocity components. Our
proposal is able to satisfy the adiabatic condition and has
some merits as compared with the previous method.

3. Results and discussion

In the enclosure of As = 2.016, velocity and temperature
solutions at Kn = 0.016 and Ra = 1507 predicted using
DSMC with Sg-SV BC and Pt-SD BC as the sidewall
condition are presented in Fig. 3a and b. It is found that
the two solutions are both at conduction state. As Ra

increase up to 1646, the extremely weak convection roll
emerge but the isotherms pattern still remains stratified just
as that at a conduction state, see Fig. 3c and d. With
increases in Ra up to Ra = 2632, the flow field solutions
at three sidewall conditions, SR, Sg-SV, and Pt-SD, are
presented in Fig. 4a–c. At this higher Ra, onset of the con-
vection is obviously occurs and vortex rolls form. Further
increases Rayleigh number to Ra = 3061, the flow fields
with sidewall conditions of SR, Sg-SV, and Pt-SD in
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Fig. 8. DSMC predictions with Pt-SD BC at Kn = 0.016 in an enclosure of
(d) Ra = 2400, (e) Ra = 2632, (f) Ra = 3061.
Fig. 4d–f demonstrate the increasingly strong convection
in the enclosure. It is also observed that the solutions with
SR BC are of stronger convection rolls and the solutions
with boundary conditions of Sg-SV and Pt-SD are both
of relatively weaker convection. The reason for this conse-
quence is that the SR BC stands for symmetric but not
solid boundaries; while the last two conditions model
adiabatic solid walls. Physically, the confinement of the
solid walls has a retarding effect on formation of the vortex
rolls.

The velocity vector fields shown in Fig. 4 reveal only
qualitative nature of the natural convection. To compare
the differences among the solutions with three adiabatic
sidewall conditions of SR, Sg-SV, and Pt-SD, a quantita-
tive presentation of the field solutions is most useful. Figs.
5 and 6 present temperature and transverse velocity distri-
butions at Ra = 2632 and 3061, respectively. In Fig. 5a, the
transverse velocity distribution with SR BC shows larger
fluid slippage as well as higher gradient in velocity distribu-
tion than the other two solutions. It implies that the SR BC
solution represents a flow field of stronger convection. The
larger difference between the local temperatures in central
and near-wall regions is also an evidence for the existence
of the strong convection effect, which can be found in the
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As = 2.016 at various Ra. (a) Ra = 1646, (b)Ra = 2127, (c) Ra = 2300,
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distorted temperature distribution shown in Fig. 5b. In
addition, both the temperature profiles for SR BC and
Pt-SD BC normal to the sidewalls, which is an evidence
of adiabatic wall condition. Besides, the SR BC solution
has more noticeable slippage on sidewalls. On the contrary,
the Sg-SV BC and the Pt-SD BC proposed in the present
work generate near-zero velocity (slip velocity) on side-
walls. It is believed that the conditions of Sg-SV and the
Pt-SD are better for prescribing a solid wall. In the case
of Ra = 3061 shown in Fig. 6, the similar effects can be
found and even more obvious for this higher Ra.

Bifurcation diagrams for Kn = 0.016 with the tempera-
tures on the middle point of the right-wall, hR, on the mid-
dle point of the enclosure, hM, and the horizontal average,
�h, versus the governing parameter Ra are plotted in Fig. 7.
Theoretically, the fluid layer between two parallel plates
heat from below has critical condition Ra = 2010 and the
corresponding wavelength is 2.016. From continuum com-
putation for the solid enclosure of aspect ratio 2, the criti-
cal condition is Ra = 2160. The present predictions for the
case of Kn = 0.016 with either Sg-SV or Pt-SD condition in
Fig. 7 show that the threshold occurs in the range of Ra
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between 2000 and 2200. To provide a clearer picture about
the variation of the thermal-fluid behaviors with Ra around
threshold condition, the velocity vector fields and iso-
therms at Ra = 1646–3061 solved with the Pt-SD BC are
presented in Fig. 8. By carefully inspecting the results
shown in Fig. 8, it can be inferred that the onset of the con-
vection in this case occurs at Ra � 2120.

In this rarefied gas flow configuration, particle motion is
three-dimensional but, with periodicity in z-direction (per-
pendicular to the paper) as that treated in previous studies,
the resultant bulk flow motion is presented as two-dimen-
sional in x–y plane. Considering the density variation in
the flow field, the stream function w is defined based on
the velocity-stream function relationships for compressible
flows, i.e., qu = ow/oY and qv = �ow/oX. Therefore, the
local stream function can be evaluated by an integration
of the above relations, e.g., w ¼

R
qudY along a line of

X = constant. The maximum value of stream function wm

can be used to characterize the strength of the vortex rolls.
Fig. 9 shows the predictions of the maximum value of
stream function wm varying with Ra at As = 2.016, and
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Kn = 0.01, 0.016, and 0.02. Two solid wall conditions, Sg-
SV BC and Pt-SD BC, generate very close results. It can be
observed from the predictions presented in Fig. 9 that an
increase in Kn causes premature convection state. How-
ever, in this case of smaller enclosure, the solid wall con-
finement effect is more salient and the onset of the
instability appears mildly but not so abruptly like that
for an infinitely extend fluid layer. To demonstrate this
point, we present the predictions for the solid-wall enclo-
sure of As = 4 in Fig. 10, where it is found that the influ-
ence of Kn has similar qualitative trend as the above
case. As we addressed earlier, however, the onset of ther-
mal instability from conduction to convection state occurs
more dramatically under this configuration of weaker wall
confinement. For the cases of As = 4 with the present side
wall boundary condition, Pt-SD BC, the streamline pattern
changes with the increasing Ra at Kn 0.01 and 0.02 are
shown in Fig. 11. The detailed flow fields combining with
the wm data in Fig. 10, it can be observed that, for
As = 4, the critical conditions are Ra � 2400 at Kn = 0.01
and Ra � 2000 at Kn = 0.02.
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Fig. 11. Variation of steamline patterns of natural convection with Ra in the en
So far, with DSMC results presented above, we have
disclosed that the two versions of adiabatic solid-wall con-
ditions, Sg-SV and Pt-VD, generate solutions quite close
to each other. However, the time-evolutions of thermal-
fluid solutions are different in the two cases. In Fig. 12,
we use a typical case of Kn = 0.016 and Ra = 2632 to
address it. The DSMC simulation with Sg-SV BC settles
down after 20,000th time step (N); while that with Pt-SD
BC seems brought into steady state as earlier as about
N = 7000. In Fig. 13, comparison of the solution histo-
grams of various boundary conditions, the temperatures
hR, hM, and �h are monitored and presented. Fig. 13a shows
a typical result with the SR BC. The computation con-
verges to a steady state at the time step around
N = 12,000. It is a simulation for periodic boundary con-
dition rather than for adiabatic solid wall, but can be used
in comparison with the computations with Sg-SV BC and
Pt-SD BC conditions shown in Figs. 13b and c, respec-
tively. It is found that the simulation with the Sg-SV BC
evolves quite slow, while that with the present Pt-SD BC
shows relatively faster evolution to the stationary state.
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Our result converges even faster than that with the simple
SR BC for periodic boundaries. In addition, since there is
no need to judge the segment type of the collision site like
that in the Sg-SV BC, the Pt-SD BC proposed in the pres-
ent paper is more physically realistic as well as renders the
computation more efficient.
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4. Concluding remarks

In the present work, a relatively novel wall-molecule col-
lision rule for simulation of an adiabatic solid wall has been
proposed and studied by using DSMC results of the Ray-
leigh–Bénard convection in a rectangular enclosure of adi-
abatic solid sidewalls. The present results demonstrated
that the simulations with the previous hybrid condition
(Sg-SV BC [26,27]) and the presently proposed Pt-SD BC
generate reasonable predictions of critical condition and
the thermal flow fields. In the parameter range considered
in the present work, the simulations of the Rayleigh–
Bénard thermal instability in solid enclosures of
As = 2.016 and four have demonstrated that the increase
in Kn may cause premature instability. The predictions
with Sg-SV BC and Pt-SD BC agree very well in both qual-
itative and quantitative aspects. However, the novel treat-
ment of wall-fluid molecular collision rule (Pt-SD BC) is
more physically realistic and, based on the numerical
experiment in the present work, it has been demonstrated
that the novel Pt-SD BC leads computation to reach equi-
librium more efficiently.
Acknowledgement

This research was partially supported by the National
Science Council, the Republic of China under the Grant
NSC 93-2212-E- 014-004.
References

[1] M. Gad-el-Hak, The MEMS Handbook, CRC Press, USA, 2002.
[2] G. Ciccotti, W.G. Hoover, Molecular-Dynamics Simulation of

Statistical Mechanical Systems, North-Holland, Amsterdam, 1986.
[3] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clar-

endon Press, Oxford, New York, 1990.
[4] J.M. Haile, Molecular Dynamics Simulation: Elementary Methods,

Wiley, New York, 1992.
[5] G.A. Bird, Molecular Gas Dynamics and Direct Simulation of Gas

Flow, Clarendon Press, Oxford, New York, 1994.
[6] E.S. Oran, C.K. Oh, B.Z. Cybyk, Direct simulation Monte Carlo:

Recent advances and applications, Annu. Rev. Fluid Mech. 30 (1998)
403–441.

[7] G.A. Bird, The direct simulation Monte Carlo method: Current status
and perspectives, in: M. Mareschal (Ed.), Microscopic Simulations of
Complex Flows, Plenum Press, New York, 1990, pp. 1–13.

[8] G.E. Karniadakis, A. Beskok, Micro Flows: Fundamentals and
Simulation, Springer-Verlag, New York, 2002, p. 257.

[9] S. Chandrasekhr, Hydrodynamic and Hydromagnetic Stability,
Clarendon Press, Oxford, New York, 1961.

[10] K.T. Yang, Transitions and bifurcations in laminar buoyant flows in
confined enclosures, ASME J. Heat Transf. 110 (1988) 1191–1203.

[11] E. Koschmieder, Bénard Cells and Taylor Vortices, Part I, Cambridge
Univ. Press, Cambridge, England, UK, 1993.

[12] A.V. Gelting, Rayleigh–Bénard Convection: Structures and Dynam-
ics, World Scientific, Singapore, 1998.

[13] E. Bodenschatz, W. Pesch, G. Ahlers, Recent developments in
Rayleigh–Bénard convection, Annu. Rev. Fluid Mech. 32 (2000) 709–
778.

[14] A.L. Garcia, Hydrodynamic fluctuations and the direct simulation
Monte Carlo method, in: M. Mareschal (Ed.), Microscopic Simula-
tions of Complex Flows, Plenum, New York, 1990, pp. 141–162.

[15] A.L. Garcia, C. Penland, Fluctuating hydrodynamics and principal
oscillation pattern analysis, J. Stat. Phys. 64 (5/6) (1991) 1121–1132.

[16] S. Stefanov, C. Cercignani, Monte Carlo simulation of Bénard’s
Instability in a rarefied gas, Eur. J. Mech. B/Fluids 11 (5) (1992) 543–
553.

[17] T. Watanabe, H. Kaburaki, M. Yokokawa, Simulation of a two-
dimensional Rayleigh–Bénard system using the direct simulation
Monte Carlo method, Phys. Rev. E 49 (5) (1994) 4060–4064.



456 P.Y. Tzeng et al. / International Journal of Heat and Mass Transfer 51 (2008) 445–456
[18] K. Yoshimura, T. Abe, Rarefaction effect on the Rayleigh–Bénard
instability, AIAA 95-2055, Paper Presented at 30th AIAA Thermo-
physics Conference, June 19–22, San Diego, USA, 1995.

[19] E. Golshtein, T. Elperin, Convective instabilities in rarefied gases by
direct simulation Monte Carlo method, J. Thermophys. Heat Transf.
10 (2) (1996) 250–256.

[20] T. Watanabe, H. Kaburaki, Particle simulation of three-dimensional
convection patterns in a Rayleigh–Bénard system, Phys. Rev. E 56 (1)
(1997) 1218–1221.

[21] H. Hirano, M. Seo, H. Ozoe, Two-dimensional numerical computa-
tion for Rayleigh–Bénard convection with both the Navier–Stokes
equation and the Boltzmann equation, Model. Simul. Mater. Sci.
Eng. 10 (2002) 765–780.

[22] S. Stefanov, V. Roussinov, C. Cercignani, Rayleigh–Bénard flow of a
rarefied gas and its attractors. I. Convection regime, Phys. Fluids 14
(7) (2002) 2255–2269.
[23] S. Stefanov, V. Roussinov, C. Cercignani, Rayleigh–Bénard flow of a
rarefied gas and its attractors. II. Chaotic and periodic convection
regime, Phys. Fluids 14 (7) (2002) 2270–2288.

[24] P.Y. Tzeng, M.H. Liu, Direct simulation Monte Carlo modeling on
two-dimensional Rayleigh–Bénard instabilities of rarefied gas, Num.
Heat Transf. A 47 (8) (2005) 805–823.

[25] P.Y. Tzeng, M.H. Liu, Influence of number of simulated particles on
DSMC modeling of micro-scale Rayleigh–Bénard flows, Int. J. Heat
Mass Transf. 48 (14) (2005) 2841–2855.

[26] D.C. Rapaport, Time-dependent patterns in atomistically simulated
convection, Phys. Rev. A 43 (12) (1991) 7046–7048.

[27] D.C. Rapaport, Unpredictable convection in A small box: molecular-
dynamics experiments, Phys. Rev. A 46 (4) (1992) 1971–1984.

[28] K. Yamamoto, H. Takeuchi, T. Hyakutake, Characteristics of
reflected gas molecules at a solid surface, Phys. Fluids 18 (2006)
046103.


	Atomistic simulation of rarefied gas natural convection in a finite enclosure using a novel wall-fluid molecular collision rule for adiabatic solid walls
	Introduction
	Physical model and boundary conditions
	Thermal-fluid model - enclosure heated from below
	Boundary conditions

	Results and discussion
	Concluding remarks
	Acknowledgement
	References


